Blockade of glutamatergic transmission in perirhinal cortex impairs object recognition memory in macaques.
نویسندگان
چکیده
The perirhinal cortex (PRc) is essential for visual recognition memory, as shown by electrophysiological recordings and lesion studies in a variety of species. However, relatively little is known about the functional contributions of perirhinal subregions. Here we used a systematic mapping approach to identify the critical subregions of PRc through transient, focal blockade of glutamate receptors by intracerebral infusion of kynurenic acid. Nine macaques were tested for visual recognition memory using the delayed nonmatch-to-sample task. We found that inactivation of medial PRc (consisting of Area 35 together with the medial portion of Area 36), but not lateral PRc (the lateral portion of Area 36), resulted in a significant delay-dependent impairment. Significant impairment was observed with 30 and 60 s delays but not with 10 s delays. The magnitude of impairment fell within the range previously reported after PRc lesions. Furthermore, we identified a restricted area located within the most anterior part of medial PRc as critical for this effect. Moreover, we found that focal blockade of either NMDA receptors by the receptor-specific antagonist AP-7 or AMPA receptors by the receptor-specific antagonist NBQX was sufficient to disrupt object recognition memory. The present study expands the knowledge of the role of PRc in recognition memory by identifying a subregion within this area that is critical for this function. Our results also indicate that, like in the rodent, both NMDA and AMPA-mediated transmission contributes to object recognition memory.
منابع مشابه
Glutamate receptors in perirhinal cortex mediate encoding, retrieval, and consolidation of object recognition memory.
Object recognition is consistently impaired in human amnesia and animal models thereof. Results from subjects with permanent brain damage have revealed the importance of the perirhinal cortex to object recognition memory. Here, we report evidence from rats for interdependent but distinct stages in object recognition memory (encoding, retrieval, and consolidation), which require glutamate recept...
متن کاملPerirhinal cortex muscarinic receptor blockade impairs taste recognition memory formation.
The relevance of perirhinal cortical cholinergic and glutamatergic neurotransmission for taste recognition memory and learned taste aversion was assessed by microinfusions of muscarinic (scopolamine), NMDA (AP-5), and AMPA (NBQX) receptor antagonists. Infusions of scopolamine, but not AP5 or NBQX, prevented the consolidation of taste recognition memory using attenuation of neophobia as an index...
متن کاملPerirhinal cortex ablation impairs visual object identification.
Impairments in both recognition memory and concurrent discrimination learning have been shown to follow perirhinal cortex ablation in the monkey. The pattern of these impairments is consistent with the hypothesis that the perirhinal cortex has a role in the visual identification of objects. In this study we compared the performance of a group of three cynomolgus monkeys with bilateral perirhina...
متن کاملThe development of object recognition memory in rhesus macaques with neonatal lesions of the perirhinal cortex
To investigate the role of the perirhinal cortex on the development of recognition measured by the visual paired-comparison (VPC) task, infant monkeys with neonatal perirhinal lesions and sham-operated controls were tested at 1.5, 6, 18, and 48 months of age on the VPC task with color stimuli and intermixed delays of 10 s, 30 s, 60 s, and 120 s. Monkeys with neonatal perirhinal lesions showed a...
متن کاملScopolamine infused into perirhinal cortex improves object recognition memory by blocking the acquisition of interfering object information.
In a previous study, we reported apparently paradoxical facilitation of object recognition memory following infusions of the cholinergic muscarinic receptor antagonist scopolamine into the perirhinal cortex (PRh) of rats. We attributed these effects to the blockade by scopolamine of the acquisition of interfering information. The present study tested this possibility directly by modifying the s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 35 12 شماره
صفحات -
تاریخ انتشار 2015